Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509166

RESUMO

Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.


Assuntos
Fusão de Membrana , Viroses , Humanos , Proteínas Virais de Fusão/química , Antivirais , Fertilização
2.
mBio ; 13(1): e0292021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073741

RESUMO

Retroviral elements from endogenous retroviruses have functions in mammalian physiology. The best-known examples are the envelope proteins that function in placenta development and immune suppression. Porcine endogenous retroviruses (PERVs) are an understudied class of endogenous retroviruses that infect cultured human cells, raising concern regarding porcine xenografts. The PERV envelope glycoprotein has also been proposed as a possible swine syncytin with a role in placental development. Despite the growing interest in PERVs, their envelope glycoproteins remain poorly characterized. Here, we successfully determined the postfusion crystal structure of the PERV core fusion ectodomain. The PERV fusion protein structure reveals a conserved class I viral fusion protein six-helix bundle. Biophysical experiments demonstrated that the thermodynamic stability of the PERV fusion protein secondary structure was the same at physiological and acidic pHs. A conserved surface analysis highlights the high degree of sequence conservation among retroviral fusogens in the chain reversal region that facilitates the large-scale conformational change required for membrane fusion. Further structural alignment of class I viral fusogens revealed a phylogenetic clustering that shows evolution into various lineages that correlate with virus mechanisms of cell entry. Our work indicates that structural dendrograms can be used to qualitatively infer insights into the fusion mechanisms of newly discovered class I viral fusogen structures. IMPORTANCE Class I viral fusion proteins represent a diverse group of fusogens that catalyze membrane fusion. Although structural studies have focused on those from exogenous viruses, ancient retroviral infections of germ line cells have immortalized ancient fusogens in eukaryotic genomes. These "fossilized" glycoproteins are poorly defined compared to modern fusogens. In this study, we characterized and determined the structure of the porcine endogenous retrovirus fusogen, an ancient retroviral element captured by swine. This fusion protein revealed remarkable alignment to exogenous retroviral fusion proteins, suggesting that fossil fusogens utilize similar structural determinants to perform membrane fusion. Moreover, structural phylogenetic analysis demonstrates that class I viral fusogens cluster into distinct lineages defined by mechanism of membrane fusion. Our results suggest that structural dendrograms can be used to infer mechanistic insights for uncharacterized fusion proteins.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Feminino , Gravidez , Humanos , Suínos , Animais , Proteínas do Envelope Viral/genética , Filogenia , Placenta/metabolismo , Proteínas Virais de Fusão , Glicoproteínas , Mamíferos/metabolismo
3.
STAR Protoc ; 2(4): 100994, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34934961

RESUMO

Dynamic monitoring of protein conformational changes is necessary to fully understand many biological processes. For example, viral entry and membrane fusion require rearrangement of its viral glycoprotein. We present a step-by-step protocol for site-specific bimane labeling of the influenza-C fusogen to map proximity and conformational movements using tryptophan-induced fluorescence quenching. This protocol is adaptable for other proteins and for protein-protein interaction detection. For complete details on the use and execution of this protocol, please refer to Serrão et al., 2021.


Assuntos
Espectrometria de Fluorescência/métodos , Triptofano/química , Proteínas Virais de Fusão , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/metabolismo , Conformação Proteica , Triptofano/metabolismo , Proteínas Virais de Fusão/análise , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus
4.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34459848

RESUMO

Fertilization is defined as the union of two gametes. During fertilization, sperm and egg fuse to form a diploid zygote to initiate prenatal development. In mammals, fertilization involves multiple ordered steps, including the acrosome reaction, zona pellucida penetration, sperm-egg attachment, and membrane fusion. Given the success of in vitro fertilization, one would think that the mechanisms of fertilization are understood; however, the precise details for many of the steps in fertilization remain a mystery. Recent studies using genetic knockout mouse models and structural biology are providing valuable insight into the molecular basis of sperm-egg attachment and fusion. Here, we review the cell biology of fertilization, specifically summarizing data from recent structural and functional studies that provide insights into the interactions involved in human gamete attachment and fusion.


Assuntos
Fertilização , Fusão de Membrana , Biologia Celular , Humanos
5.
Cell Rep ; 35(7): 109152, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010634

RESUMO

Enveloped virus entry requires the fusion of cellular and viral membranes, a process directed by their viral fusion glycoproteins. Our current knowledge of this process has been shaped by structural studies of the pre- and post-fusion conformations of these viral fusogens. These structural snapshots have revealed the start and end states necessary for fusion, but the dynamics of the intermediate conformations have remained unclear. Using the influenza C virus hemagglutinin-esterase-fusion glycoprotein as a model, we report the structural and biophysical characterization of a trapped intermediate. Crystallographic studies revealed a structural reorganization of the C terminus to create a second chain reversal region, resulting in the N and C termini being positioned in opposing directions. Intrinsic tryptophan fluorescence and bimane-induced quenching measurements suggest intermediate formation is mediated by conserved hydrophobic residues. Our study reveals a late-stage extended intermediate structural event. This work adds to our understanding of virus cell fusion.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas Virais de Fusão/metabolismo , Humanos , Modelos Moleculares
6.
Cell Host Microbe ; 28(6): 778-779, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33301717

RESUMO

In this issue of Cell Host & Microbe, Lu et al. utilize single-molecule FRET to reveal the conformation dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, showing transitions from a closed ground state to the open receptor-accessible conformation via an on-path intermediate. These insights into spike conformations will facilitate rational immunogen design.


Assuntos
COVID-19/imunologia , Pandemias , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/ultraestrutura , COVID-19/genética , COVID-19/virologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Conformação Proteica , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/ultraestrutura
7.
Methods Mol Biol ; 2151: 159-172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32452003

RESUMO

Dihydrofolate reductase (DHFR) is an essential enzyme for nucleotide metabolism used to obtain energy and structural nucleic acids. Schistosoma mansoni has all the pathways for pyrimidine biosynthesis, which include the thymidylate cycle and, consequentially, the DHFR enzyme. Here, we describe the characterization of Schistosoma mansoni DHFR (SmDHFR) using isothermal titration calorimetry for the enzymatic activity and thermodynamic determination, also the folate analogs inhibition. Moreover, X-ray crystallography was used to determine the enzyme atomic model at 1.95 Å.


Assuntos
Schistosoma mansoni/enzimologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Calorimetria , Cristalografia por Raios X , Ensaios Enzimáticos , Ácido Fólico/análogos & derivados , Congelamento , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Síncrotrons , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/isolamento & purificação
8.
Int J Biol Macromol ; 156: 18-26, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275991

RESUMO

The selenocysteine (Sec) incorporation is a co-translational event taking place at an in-frame UGA-codon and dependent on an organized molecular machinery. Selenium delivery requires mainly two enzymes, the selenocysteine lyase (CsdB) is essential for Sec recycling and conversion to selenide, further used by the selenophosphate synthetase (SelD), responsible for the conversion of selenide in selenophosphate. Therefore, understanding the catalytic mechanism involved in selenium compounds delivery, such as the interaction between SelD and CsdB (EcCsdB.EcSelD), is fundamental for the further comprehension of the selenocysteine synthesis pathway and its control. In Escherichia coli, EcCsdB.EcSelD interaction must occur to prevent cell death from the release of the toxic intermediate selenide. Here, we demonstrate and characterize the in vitro EcSelD.EcCsdB interaction by biophysical methods. The EcSelD.EcCsdB interaction occurs with a stoichiometry of 1:1 in presence of selenocysteine and at a low-nanomolar affinity (~1.8 nM). The data is in agreement with the small angle X-ray scattering model fitted using available structures. Moreover, yeast-2-hybrid assays supported the macromolecular interaction in the cellular environment. This is the first report that demonstrates the interaction between EcCsdB and EcSelD supporting the hypothesis that EcSelD.EcCsdB interaction is necessary to sequester the selenide during the selenocysteine incorporation pathway in Bacteria.


Assuntos
Liases/química , Liases/metabolismo , Fosfotransferases/química , Fosfotransferases/metabolismo , Selenocisteína/biossíntese , Varredura Diferencial de Calorimetria , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Estabilidade Proteica , Desdobramento de Proteína , Espalhamento a Baixo Ângulo , Selênio/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Técnicas do Sistema de Duplo-Híbrido , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...